Graceli functions of infinitesimal waves.
Graceli elements for a variable and infinitesimal geometry and trigonometry.
Author : Luiz Ancelmo Graceli .
For harmonic waves of the same amplitude the superposition principle is in the form.
Using the relationship.
y(x,t) = y1(x,t) + y2(x,t) = ym [sen(kx - wt + f) + sen(kx - wt )]
sen a + sen b = 2 sen [(a+b)/2] cos [(a-b)/2]
y(x,t) = [2ym cos(f/2)] sen(kx - wt + f/2)
Thus, if the phase f = 0 , the interference is constructive
whereas if the phase f = p , the interference is destructive
If the amplitudes are different interference is partial .
For the wave variables Graceli variables .
[ logx / x ... n ] + [ x * Rposit . Rnegati , 0 =
y(x,t) = [2ym cos(f/[a/t[logx/x n…] + [x * Rposit. Rnegati, 0 = A])] sen(kx - wt + f/[a/t + [logx/x n…] + [x * Rposit. Rnegati, 0 = A])
f = [a/t + [logx/x n…] + [x * Rposit. Rnegati, 0 = A].
whereas if the phase f= [a / t + [ logx / ... xn ] + [x * Rposit . Rnegati , 0 = ] .
that is, the waves have Graceli infinitesimal variable and discontinuous variations, and movements and rotations over time.
And by measuring sides of triangles , spheres, cubes , and other geometric elements , and we have a geometry and variable, dynamic and infinitesimal trigonometry.
Nenhum comentário:
Postar um comentário